Telegram Group & Telegram Channel
πŸ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

βœ… This Week's Presentation:

πŸ”Ή Title: InitNO: Boosting Text-to-Image Diffusion Models via Initial Noise Optimization

πŸ”Έ Presenter: Amir Kasaei

πŸŒ€ Abstract:
Recent advancements in diffusion models, like Stable Diffusion, have shown impressive image generation capabilities, but ensuring precise alignment with text prompts remains a challenge. This presentation introduces Initial Noise Optimization (InitNO), a method that refines initial noise to improve semantic accuracy in generated images. By evaluating and guiding the noise using cross-attention and self-attention scores, the approach effectively enhances image-prompt alignment, as demonstrated through rigorous experimentation.


πŸ“„ Paper: InitNO: Boosting Text-to-Image Diffusion Models via Initial Noise Optimization

Session Details:
- πŸ“… Date: Sunday
- πŸ•’ Time: 5:00 - 6:00 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban


We look forward to your participation! ✌️



tg-me.com/RIMLLab/139
Create:
Last Update:

πŸ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

βœ… This Week's Presentation:

πŸ”Ή Title: InitNO: Boosting Text-to-Image Diffusion Models via Initial Noise Optimization

πŸ”Έ Presenter: Amir Kasaei

πŸŒ€ Abstract:
Recent advancements in diffusion models, like Stable Diffusion, have shown impressive image generation capabilities, but ensuring precise alignment with text prompts remains a challenge. This presentation introduces Initial Noise Optimization (InitNO), a method that refines initial noise to improve semantic accuracy in generated images. By evaluating and guiding the noise using cross-attention and self-attention scores, the approach effectively enhances image-prompt alignment, as demonstrated through rigorous experimentation.


πŸ“„ Paper: InitNO: Boosting Text-to-Image Diffusion Models via Initial Noise Optimization

Session Details:
- πŸ“… Date: Sunday
- πŸ•’ Time: 5:00 - 6:00 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban


We look forward to your participation! ✌️

BY RIML Lab




Share with your friend now:
tg-me.com/RIMLLab/139

View MORE
Open in Telegram


RIML Lab Telegram | DID YOU KNOW?

Date: |

Telegram announces Search Filters

With the help of the Search Filters option, users can now filter search results by type. They can do that by using the new tabs: Media, Links, Files and others. Searches can be done based on the particular time period like by typing in the date or even β€œYesterday”. If users type in the name of a person, group, channel or bot, an extra filter will be applied to the searches.

Why Telegram?

Telegram has no known backdoors and, even though it is come in for criticism for using proprietary encryption methods instead of open-source ones, those have yet to be compromised. While no messaging app can guarantee a 100% impermeable defense against determined attackers, Telegram is vulnerabilities are few and either theoretical or based on spoof files fooling users into actively enabling an attack.

RIML Lab from vn


Telegram RIML Lab
FROM USA